If the cross-section does not remain the same but shrinks gradually to a point, the prism becomes a pyramid with its own apex:
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Of course it is usual to show pyramids on their bases:
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Looking at the base of our cone, we see a circle. This is the figure we obtain if we mark all points that are the same distance from a single point. This distance is called the radius and twice this distance is called the diameter:
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There is an interesting link between the distance across our circle (through the middle, its called the diameter!) and around our circle (the perimeter, or better, the circumference). It is that, for any circle, no matter how big or small, the same number of diameters would ‘wrap’ around the circumference - just over three. Of course we could equally say that the circumference is about three times the diameter or, better still, the ratio of circumference to diameter is approximately three.



But how do we find a more accurate figure for this famous ratio, pi? Well, of the many methods, one of the simplest is to draw a circle, with compasses perhaps, fit a many-sided polygon inside and measure all the sides. The sum of these measurements, divided by the diameter, will give us a ‘rough’ value for pi.



Buffon’s needle is an experimental technique that involves throwing a needle, would you believe, onto a page of ruled lines. We need the length of the needle, the distance between the lines and a formula (a type of equation) to find pi - and pick up that needle an awful lot of times!



One of the most beautiful results in mathematics gives a value for pi based on the simplest sequence 1,2,3,4,5,… .The square of pi, divided by six, is one over one squared plus one over two squared plus one over three squared and so on. Using the symbols ( (for ‘pi’), ( (for ‘so’) and ( (for ‘about’) we have, to at least seven terms:



     	(2/6 = 1/12 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72…

( 	(2/6 = 1/1+ 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49  …

(	(2/6 ( 1 + 0.25 + 0.1111 + 0.0625 + 0.04 + 0.0277  + 0.0204 

(	(2/6 ( 1.5117

(	(2    ( 9.0702

(	(     ( 3.0117



Using many more terms, we can get an increasingly accurate value for pi:
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The same calculation, performed 1001 times, yields a ‘useful’ value:
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This last figure, though, is correct only if we use the first three figures, 3.14; it is accurate to three significant figures or to two decimal places.



Some mathematicians devote considerable time to the pursuit of pi, but we shall rest with our rough result (the fraction 22/7 is also usefully accurate) and consider more circles, pictures and patterns.



The diameter of a circle is, passing as it must through the centre, a special type of chord. One chord will divide the circle into two regions but two chords will produce three regions if they don’t cross and four regions if they do. Three chords will produce at the most seven regions:
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Number of chords in circle�
Maximum number of regions�
�
1�
2�
�
2�
4�
�
3�
7�
�
4�
11�
�
5�
16�
�
6�
22�
�
7�
29�
�
8�
37�
�
9�
46�
�
10�
56�
�


Here again we have produced a pattern from pictures; the difference between any two adjacent numbers in the right-hand column increases by one each time. If we wanted to find the maximum number of regions for twenty chords, though, it would be easier to use a formula. Using n for the number of chords and r for the regions, we have:



			r = (n2 + n + 2)/2



That is, n squared, plus n, plus two all divided by two. The answer for twenty chords is:



			r = (202 + 20 + 2)/2 = 211



One feature of the circle is that turning it about its centre does not produce any changes. It looks the same no matter whether we turn it through a full-turn, half-turn , quarter-turn or indeed any type of turn. Our old friend the square, on the other hand, will appear in the same place if we rotate it through a full-turn, a half-turn, a quarter-turn, a three-quarter turn and no other type of turn. We say that its order of rotational symmetry is 4. Of course, any shape that is turned through a full turn will ‘overlap’ itself - so every shape has an order of rotational symmetry of at least one. The circle can be regarded as having rotational symmetry of order infinity!



More examples are the equilateral triangle (order 3) and the rectangle (order 2); but what if we no longer rotate about a point and choose a line?

�

The square will produce a cylinder and the circle will generate a sphere:

�

We can reflect in a line as well; if a complete overlap is produced, the line is acting as a mirror and is thus a line of reflective symmetry. The square has four lines of symmetry, the circle as many as you like, the rectangle two and the equilateral triangle three:

� EMBED Word.Picture.6  ���

Let us take a closer look at our good square with one of these lines, the diagonal, in place:

�



As before, we have two right-angled triangles. Marking the length of the shorter sides as 1 ‘unit’ and the longest side as D ‘units’, a question is begged. Can we work out the value of D? In other words, can we find D, without measuring?



The answer, as you might have guessed, is that we can. Now, if you imagine a triangle with sides of length 3,4 and 5 ‘units’ (centimetres, inches or elephants’ trunks) then it will be right-angled. As it happens, the square of 3 (which is 9) plus the square of 4 (16) is the square of 5 (25):



32 + 42 = 52 ( 9 + 16 = 25



Take care, because 3,4 & 5 are the only consecutive whole numbers for which this works, but if you’d like to draw a triangle with sides of 5,12 and 13 you will find that it, too, is right-angled.



It seems that if we take the two shorter sides of a right-angled triangle, square each of their lengths and add the results together, we get the square of the length of the longest side. Our triangle has the shorter sides equal in length - one unit - and one squared is just one; so we need to think of a number which, when squared, comes to one plus one, or two. The answer is our old pal, the square root of two. 



12 + 12 = ((2)2 ( 1 + 1 = 2



Our diagonal is, therefore, about one point four units long.



There is another way of finding the longest side of a right-angled triangle (also called the hypotenuse). Inspection of your calculator might reveal some buttons labelled sin (though most of us don’t need a calculator for that), cos and tan. Now our right-angled triangle has two shorter sides that are equal. That means that our triangle is isosceles and the two angles other than the right-angle must also be equal. Recalling that the angles in any triangle add up to one hundred and eighty degrees and that the right-angle in ours will account for ninety of them, each of the smaller angles must be forty-five.



So we know all of the angles and two of the sides. Entering 45 and pressing sin (short for sine as in whine) we get 0.7 (approx.). Now the sine of an angle is defined as the opposite side divided by the hypotenuse, so the 0.7 can be put equal to 1 (happily, both of the ‘opposite’ sides are 1 in our triangle) divided by D (the diagonal):



0.7 = 1/D



So 1 divided by some number must give 0.7; the number is 1/0.7, about 1.4!



That provides a taste of trigonometry. Cos (for cosine) and tan (for tangent) are the other common ‘trigonometrical ratios’; the cosine of an angle is its adjacent side divided by the hypotenuse and the tangent of an angle is its opposite side divided by its adjacent side (not the hypotenuse!). Checking these for just one of our angles, we get: �

sin(45) = opposite/hypotenuse = 1/1.4 = 0.7

cos(45) = adjacent/hypotenuse = 1/1.4 = 0.7

tan(45) = opposite/adjacent = 1/1 = 1.0







It is a matter of taste as to which of our techniques is best. Using squares and square roots often provides a more accurate result and leaving an answer as ‘root two’ ((2) can be seen as more precise than 1.4 or even 1.414! Many would agree that the first method is more romantic - it uses the ancient theorem of Pythagoras:
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The square on the hypotenuse is equal to the sum of the squares on the
